Effect of oxytocin on free intracellular Ca2+ levels and progesterone release by human granulosa-lutein cells.
نویسندگان
چکیده
Oxytocin and its receptor are found in the corpus luteum in a variety of species, including the human. In the present study we used fura-2 microfluorimetry to investigate whether activation of the oxytocin receptor of cultured human granulosa-lutein cells causes intracellular calcium (Ca2+) signals and affects progesterone release. Although after 1 day in culture, cells were not responsive to oxytocin, the number of responsive cells increased steadily during the first 3 days in culture, reaching a maximum on days 4 and 5 (59-66%) and then declined again until day 8. Effective oxytocin concentrations were apparently independent of the culture day, and concentrations as low as 10 nmol/L increased intracellular free Ca2+ levels from 70-140 nmol/L (basal levels) to maximal peak levels of 800 nmol/L. The oxytocin-induced Ca2+ signal was not affected by removal of extracellular Ca2+ with EGTA. Moreover, depletion of intracellular Ca2+ stores by ionomycin treatment rendered the cells unresponsive to oxytocin, pointing also at the intracellular source of the oxytocin-inducible Ca2+ signal. Interestingly, after one single stimulation with oxytocin, cells became refractory to additional stimuli, and only extremely high concentrations of oxytocin induced a second increase in intracellular free Ca2+. To examine the possible effects of oxytocin on progesterone release by cultured cells, we incubated cells on culture day 2 (20% responsive cells in the fura measurements) and culture day 5 (66% responsive cells in the fura measurements) for 24 h with oxytocin (10 nmol/L) and hCG (10,000 IU/L). Although hCG significantly stimulated progesterone release, oxytocin alone was without a stimulatory effect on either day. However, a significant augmentation of the effect of hCG on progesterone release was found in incubations of cells on day 5. Interestingly, the effects of hCG also included stimulation of oxytocin release by cultured granulosa-lutein cells into the culture medium, as determined by RIA. In summary, our data indicate the presence of a functional oxytocin receptor on human granulosa-lutein cells that is linked to Ca2+ as a second messenger released from intracellular Ca2+ stores. The number of oxytocin-responsive cells increases during differentiation in culture. Moreover, oxytocin release induced by hCG and a stimulatory effect of oxytocin on the hCG-induced progesterone production during the period of maximal responsiveness of cultured cells were found. We, therefore, propose that oxytocin may have autocrine and/or paracrine functions in human granulosa-lutein cells, including fine-tuning of progesterone release.
منابع مشابه
Concerted action of human chorionic gonadotropin and norepinephrine on intracellular-free calcium in human granulosa-lutein cells: evidence for the presence of a functional alpha-adrenergic receptor.
Luteal cells are known to possess receptors for LH/hCG and receptors of the beta-adrenergic type. Interactions of specific agonists with either receptor lead to the activation of adenylate cyclase and subsequently to an increase of cAMP. Since in the human there is also evidence for the presence of alpha-adrenergic receptors, we have investigated whether activation of these receptors is linked ...
متن کاملO-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells
Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...
متن کاملEffect of progesterone on intracellular Ca2+ homeostasis in human myometrial smooth muscle cells.
Although it is well known that progesterone alters uterine contractility and plays an important role in maintenance of pregnancy, the biochemical mechanisms by which progesterone alters uterine contractility in human gestation are less clear. In this investigation we sought to identify progesterone-induced adaptations in human myometrial smooth muscle cells that may alter Ca2+signaling in respo...
متن کاملExpression of adrenomedullin by human granulosa lutein cells and its effect on progesterone production.
OBJECTIVE Adrenomedullin (AM) has diverse functions and is expressed in a variety of tissues. This study was conducted to investigate the expression of AM in the human ovary and its effect on progesterone production by human granulosa lutein cells. DESIGN AND METHODS Follicular fluid and blood samples were obtained at the time of oocyte retrieval from patients undergoing in vitro-fertilizatio...
متن کاملEffects of GnRH Mobilization and on Protein Kinase C Activity, Ca2-' Steroidogenesis of Human G ranulosa Cells
Gonadotropin-releasing hormone (GnRH) and its agonists have been known to directly affect steroid hormone production in human granulosa cells. In this study, we examined effects of GnRH on Ca2+ mobilization, protein kinase C activity and steroidogenesis of human granulosa cells. Human granulosa cells were harvested by aspiration of follicles during oocyte retrieval for IVF. Test substances, tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical endocrinology and metabolism
دوره 77 5 شماره
صفحات -
تاریخ انتشار 1993